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X-RAY DIFFRACTION BY IWNT CRYSTAL IAMELLM

By Hans Ekstein

EWMMARY

Bent crystal lamellae may consist of individual blocks, spaced
somewhat irregul~ly and having a mutual angular disorientation. ,In
this case, the X-ray intensities of the individual blocks will simply
be added. As long as the blocks are not too small, no effect on
integrated intensity or line width of a’Debye-Scherrer line is to be
expected.

Alternatively, the lsmella may be perfectly regular in its struc-
ture, except for the elastic deformation. In this case, the amplitudes.
rather than the intensities must be added.

It is shown that these two possibilities lead substantially to the
same result: No intensity change or line broadening may be expected
from moderate bending. ,

INTRODUCTION
.

It is well-known that any deviation from strict periodicity in the
crystal lattice produces a diffraction pattern different from that of
the undistorted crystal. Considerable attention has been given to the
correlation between observed “anomalous” patterns and the distortions
of crystal lattices. The simplest assumption leading to a theoretical
description is that the original perfect crystal is broken up into small
blocks, each of which is perfect in its structure, and that these blocks
diffract incoherently. Internal stresses can be taken into account by
allowing the blocks to be homogeneously deformed to varying degrees.

Observations of severely distorted solids cannot be explained by
this simple assumption alone. Therefore, other types of distortion
have been investigated,which’are sometimes rather arbitrary. One-of
the most plausible types of inhomogeneous distortion is the bending of
crystal lamellae. The usual picture of a plastically deformed crystal
shows thin crystal lsmellae which me elastically bent (see reference 1).

\
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Buerger’s theory of the formation of crystals“assumesbent lamellae,
the intervals between them being filled by misplaced atoms.

It is possible that the bent lamellae are not really elastically
deformed lattices but consist of blocks which are separatedby a
“boundary” layer of irregularly placed atoms. In this case, bending
would be a special case of block arrangement. It seems interesting,
however, to inquire whether different effects can be produced if the
whole crystal lamella is “coherent” in the sense that the contributions
of small sections add their amplitudes rather than their intensities
for the resultant scattering. More specifically,the question is
whether a bending with a negligibly small strain can produce either a
change of integrated intensity of a Debye-Scherrer line or a broadening.

Intuitively, it would seem that there should not be
between the diffraction by a bent lamella and that by an
larly spaced blocks arranged in a circle as shown below.

much difference
array of irregu-

“ fi$$!3a@@

An analysis confirming this intuitive view was made by the Armour
Research Foundation ~der the
ante of the National Advisory
part of a cooperative project

sponsorship and with the financial assist-
Committee for Aeronautics. This report is
with Dr. Stanley Siegel. .,

SUM FORMULA

Consider a simple lattice with primitive translations al, -a,

and S3 so that the radius vector of a nucleus in the undistorted

lattice is

-% = nl~l + n2_~

and the reciprocal lattice vectors are

& = ml~. + ~+ + ‘++3

(1)

,.

(2)

$
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By an elastic deformation, the atoms are displaced from their equilib-
rium positions so that their new positions sxe

*

An incident plane wave of wave vector go is diffracted in the direc-

tion & The diffracted amplitude is proportional to

(4)

where

~ =g, -lco (5)

.

.

is the radius vector in the Fourier space and F(l?) is the form factor.
From the qualitative considerations, it is known that the function ~
will be large only near the points _4. In this case, the sum in equa-

tion (4) can.’betransformed conveniently into another sum of terms, each
of which is noticeably different from zero only in the neighborhood of
one point _A. For approximate calculations, one sole term of this sum

may be used to determine the amplitude near a given point _~. Consider

the sum

(6)
11

where ~n stands for smy lattice point.

first unit cell

xl, X2, x35

For values of ~ inside the

1 (7)

where

(8)

—.. —-——...—- ——— -—-- ——— —.—— —-



. .

4 NACA TN 24!8

In this interval, let S(g) be represented by a Fourier sum:

(9)

If the volume of the unit cell is designated by v,

1=—
q (~-%+2) WP (-=-4u ● Z) dv (lo)

v
n (1)

where the integration is extended over the first unit cell. By a change

of coordinates

Equation (10)l=comesjsincethe Product _& ● –Q is ~ integer~

qm=$q q(z) exp (-2Yri& ● “x) dv

n (n)

where the integration is extended over the nth unit cell, that is

(12)

(13)
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Equation (12) can be written:

%=+

[
9(2) em (-2Yri& “ ~) dv (14)

m

the integration being extended over the infinite space. In particular,
if z = 0, equations (9) end (14.)give:

This transformation can be considered as a
zation of Poisson’s sum formula (reference

three-dimensional.generali-
2).

INTEGRATED INTENSITY

In order to apply the sum formula (15) to the sum formula (4), take

(16)

inside the crystal and (p= O outside the crystal. Equation (4) becomes

If the distortion of the crystal is not too severe, the “spots” about
the reciprocal lattice points _& will not overlap, so that in the

surrounding of one particular point ~z, ~ becomes:

.— .- ..= _______ _ . _.._ _____ ——._.—_—— —-_ —.
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further specifying the form of the displacement function
possible to derive the “integrated intensity” of a Debye.

Scherrer line from equation (18). This term is not quite unambiguous.
If a great number of identically shaped snd distorted cry%als, dis-
tributed randomly, is irradiatedby a plsne wave, the intensity will
essentially be accumulated about the Debye-Scherrer positions. “lnteg-
rated intensity” then mesns the integral of the intensity extended over
“the neighborhood” of the Debye-Scherrer line. But, since “neighborhood”
cannot be given a precise meaning, the usual definition is equivalent to
the integral from -~ to +w of o~e contribution of the form of equa-
tion (18). Obviously, this definition is meaningful only if the inten-
sity between the lines, that is, the overlap, is negligibly small.

This definition is not in agreement with that used in the theory of
thermal.scattering,where a definite distinction can be made between
“the line” and the background surrounding it.

If the above definition of “integrated intensity” is used, it can
be shown (reference 3) that it is proportional to the integral of the

square modulus of iJ
(1)

, extended over the infinite Fourier space. If,
as usual, F(a) is considered a slowly variable function and is replaced
by Fz = F(AZ), the integrated intensity of the.zth line is

=

/

dv=W (19)

where W designates the crystal volume. It follows, in general, that,–
a moderate el~tic distortion does not change the inteaated intensity

of Debye-Scherrer lines. This conclusion holds, of course, only as long
as the crystals are small enough so that the kinematic theory can be
applied, which has been assumed implicitly.

..——.
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Let the crystal
z=direction as sho~

DIFFRACTED AMPLITUDE

lamella be bent about an sxis parallel to the
in the following diagrsm.

x

t

z

/

The components of the elastic displacement are

3=u=—
R

-/v.—
2R

w= 0

(20)

a

where R is the radius of curvature. Let the’dimensions of the lamella
be 2, ‘~ ‘d w in the x-~ Y-) ad z-directions, respectively.
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From equation (18),

*(Z)
[[

w/2

= FZ exp 23ri(Z- ZZ)Z] dz X

-w/2

NACA TN 2448

= F7
sin m(z - Z-J x

31(Z-Zz)

/

t/2

dy exp

-t/2
[
2yciy(Y - (YJ+gx )]XY2 )(..XZ + y

(21)

where X7., Y2, and 22 are the components of &Z. To make the notation

clearer, the variables may be expressed in terms of a lattice param-
eter ao which might be, for instance, lall* =t

x = uao z =N~ X=2 R=~ao
a.

Y = v+ t = Ma. ,=JL .-.z=~
% 1(22)

d
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w

and p I)ecom?.:

where

( )]+Ls+— p. 2

2q”px

, ~f=p(-+)d..

(23)

(24)

1(25!

o

DIFFRACTED 1NTENSIT%

Of special interest is that case where the strain is small so that
the block hypothesis would

,. , Debye-Scherrer lines. The

about 103 atomic distances

predict no substantial intensity outside the
thickness t should not be lsrger than

~, if the kinematic theory is tobe valid.
t)

—.. -—. —-. -..—______ -_ —— .—._.— . ...-—___ _—
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But t should not be much smaller thsn 103 a. if broadening as a

result of small size is to be avoided. Therefore, M will be assumed
to be of the order of a thousand.

If strains are related to the position of the Debye-Scherrer line
in the usual way (i.e., considering each strained crystal as an isolated

diffractor), then a strain e = Ad/d of about 10-5 wouldbe hardly
noticeable. At the boundary

t Ma.
Y z=~=-

and if it is assumed that the strain in the X-direction is ..

the following relations are obtained

Ma.
R% ~xlo5

or

R 10
8

P =—~

a.

that is, the radius of curvature equals about 108 atomic distances or
it is of the order of 1 centimeter. The X-ray lines ordinarily observed
have Miller indices of the order of unity; therefore, the components of
the reciprocal lattice vectors in the region under consideration will
be at most of the order .l/~. me quantities p and q defined in

equation (22) cannot, therefore, be larger thau of the order of unity

(P % q % c1 or smsller). Consider the surrounding of a lattice point
& for which Xl %YZ x 1/~ spd, therefore)

/

B

integral in equation (24) is practically
A

cm be written:

P xq%l. Then the

independent of v, and U

.— .–—.—-- — ——
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. .. . .. . .. .. . . ...

few(iyjau””
where

1(27)

In the exponent of the first integral of equation (26) the small

quantity v~2/2qp has been omitted.
.

The first integral in equation (26),

.

(26)

[ 1(x- X7)X
sin3rt Y”-yz+. . Y

[ 1
(x-Xz)x

Y -Y~+
Y a.

[

(x- 1X7)X2
sinyrt Y-YZ+
. Y~

[

(x-

1

%)%“aoY-YZ+
Y~

(28)

-——. —.—. .-—__ .,_. ___
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since X and Y change little in the neighborhood of the lattice point.
If a new variable in Fourier space

:’!

(29)

is defined so that the lines P = Constsmt sre straight lines normal to
the vector (X2,Y2)~ as show kelow> it can be seen that the direction

~ ~(y-y,l

- xl)

= Constant

Constat is tangenti~ to the sphere IR I = IAZI.

The intensity is, by equations (4), (23), (26), (28), and (29):

?

.’1

where A and B depend on the coordinate X - Xl = s/~ ody~ if Y
.

If I

B2
is again considered nearly constsnt. The quantity is usually

A

represented by Cornu’s spiral, snd it is sufficient to discuss its
properties qualitatively.

.
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If (X - X2) is small, then.by equation (27) the limits Aand B

are of the order of N/@. AS aR ex~ple, take N of the order of 106;

that is, the dimension of the lsmella in the X-direction is about
1~10 millimeter. In this case, Ax -100 and B% 100 if (X -Xl) “

Irl
B2

is small. In this range, the quantity has the nesrly coristant

value 2. The value of this square modulus begins to decrease rapidly
soon as one of its limits becomes of the order of unity. This will

as

bappen when

Isl g~-

or, if as above N%106 and p=108 me

the order 10-2. The intensity “spot” about

chosen, when ISt reaches

the reciprocal lattice
point Al consists then of the product of three functions:

~in~(=2)/dz-z J’J2 “which limits its extent in the Z-direction;

(sin tiPlfiP)2 which in a section Z = Constant makes the intensity
decrease rapidly in a direction parallel to the lattice vector J&; and
a function of (X - X7) which .issensibly constant up to a certain

vslue (e.g., 10-2) and then decreases rapidly. The preceding schematic
diagram shows the spot in a section Z = Constmt neu z = Z2 . In our

example, the spot is about 10 times longer in the direction normal to
& thsn in the direction of A2. Since the length of the spot is

tangential to the sphere IR I = Constant (i.e., e = Constsnt for a
Debye-Scherrer picture), no line broadening is to be e~ected. ‘

.

The distribution of intensity is of the same type as that to be
expected from the block hypothesis: The actual spot csn be imagined to
be produced by a smearing out of the original rectsmgular spot about
ill,as the crystals are slightly rotated about the Z-direction.

A discussion of the cases ‘2 :0 snd Y2Z O leads qualitatively

to the same result smd will not be reproduced here.

_.-.— --—__ .______ ._.- -__—_ ..—— — -——... . . . .- .—— ————. .—.-——



14 NACA TN 2448

CONCLUSIONS

A bent crystal lamella may consist of individual blocks, s~aced
somewhat irregularly and having a mutual angular disorientation. In

4

this case, for calculation of X-ray intensities,the intensities of the
individual blocks will simply be added. As long as the blocks are not
too small, no effect on integrated intensity or line width of a Debye-
Scherrer line is to be expected.

Alternatively, the lamella may be perfectly regular in its struc-
ture, except for the elastic deformation. Jn this case, the amplitudes
rather than intensities must be added.

It is shown that the two possibilities lead to substantially the
same result: No intensity change or line broadening may be expected
from moderate bending.

Armour Research Foundation -
Chicago, 111., Julyl, 1948
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